In [1]:
import numpy
import math
import pylab

NS

$$h(t) \approx_0 \frac{16 \pi^2 G}{c^4 r}I \epsilon (\nu_0 + \dot{\nu}t)^2 cos(2\pi(\nu_0+\dot{\nu}t)t)$$

In [21]:
G = 6.67408*1e-11
c = 299792458
r = 2.4377e+20
I = 1e38
epsilon = 1e-4
nu0 = 1
nudot = -5e-10

cost = 16*math.pi**2*G/(c**4*r)*I*epsilon
print(cost)
nmesi = 9
tobs = nmesi*30*24*60*60
print(tobs)
tempi = numpy.linspace(0,10,100000)

leggeOraria = nu0+nudot*tempi
ampiezza = cost*numpy.power(leggeOraria,2)

onda = ampiezza*numpy.cos(2*math.pi*leggeOraria*tempi)

%matplotlib notebook
#pylab.plot(tempi,ampiezza)
pylab.plot(tempi,onda)
pylab.show()


5.35239390032645e-29
23328000

In [24]:
t = numpy.linspace(1,24,100000)
ampiezza = 1e-19
sd = 1e-9
freqIniz = 1
ondaNS = ampiezza*(sd/(freqIniz-sd*t))**(1/2)*numpy.cos(2*(freqIniz-sd*t)*t)

%matplotlib notebook
pylab.plot(t,ondaNS)
pylab.show()



In [22]:
ampPerTempo = ampiezza*(sd/(freqIniz-sd*t))**(1/2)

%matplotlib notebook
pylab.plot(t,ampPerTempo)
pylab.show()


chirp


In [29]:
t = numpy.linspace(1,2,1000)
ampiezza = 1e-2
tcoal = 2.05
freqIniz = 20
ondaChirp = ampiezza*freqIniz*numpy.power((1-t/tcoal),-2/8)*numpy.cos(freqIniz*numpy.power((1-t/tcoal),-3/8)*t)

%matplotlib notebook
pylab.plot(t,ondaChirp)
pylab.show()



In [30]:
ampPerTempo = ampiezza*freqIniz*numpy.power((1-t/tcoal),-2/8)

%matplotlib notebook
pylab.plot(t,ampPerTempo)
pylab.show()



In [ ]: